
VOLUME 87, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 27 AUGUST 2001

097203-1
Magnetization Plateaus of SrCu2���BO3���2 from a Chern-Simons Theory
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The antiferromagnetic Heisenberg model on the frustrated Shastry-Sutherland lattice is studied by a
mapping onto spinless fermions carrying one quantum of statistical flux. Using a mean-field approxi-
mation these fermions populate the bands of a generalized Hofstadter problem. Their filling leads to the
magnetization curve. For SrCu2�BO3�2 we reproduce plateaus at 1�3 and 1�4 of the saturation moment
and predict a new one at 1�2. Gaussian fluctuations of the gauge field are shown to be massive at these
plateau values.
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Two-dimensional (2D) quantum spin systems that do
not order magnetically at zero temperature are currently
a subject of great theoretical and experimental interest.
The recently discovered [1] compound SrCu2�BO3�2 is an
antiferromagnet (AF) with localized spins S �

1
2 , a gap

above the ground state [2], and the unique property that its
magnetization curve has plateaus at 1�3, 1�4, and 1�8 of
the full saturation moment [3]. The spin system may be
described by a 2D Heisenberg model on a square lattice
with exchange constant J 0 and additional diagonal bonds
J on half of the square plaquettes (see inset of Fig. 1).

This lattice was studied many years ago by Shastry and
Sutherland [4] who noted that there is an exact eigenstate
which is obtained by putting singlets on all diagonal J
bonds. This eigenstate is the ground state for a wide in-
terval of J 0�J. For J 0�J smaller than �0.7 [5], the system
has dimer long-range order, and for larger J 0 it has conven-
tional Néel long-range AF order. There may be additional
phases in between such as a plaquette singlet phase [6–8]
but they are apparently not realized in SrCu2�BO3�2 where
J 0�J is estimated to be smaller than 0.65 [9,10]. This dimer
ground state explains the spin gap as seen in experiments.
However, the existence of plateaus has no immediate ex-
planation since the simplicity of the ground state does not
extend to the excited states of this peculiar lattice. In this
Letter we use a mean-field approximation with a Chern-
Simons (CS) field-theoretic approach to quantum magnets
suggested some time ago [11,12], and we obtain an excel-
lent quantitative fit of the magnetization curve [see Fig. 1]
for realistic values of the exchange constants. As we dis-
cuss, this may be evidence for unconventional character of
the plateau ground states.

Starting from the pure dimer state, the first excited state
can be constructed by first breaking a singlet bond into
a triplet state. Because of the exchange J 0, such a state
will move and we expect a dispersive band of triplets as
low-lying states at least for strong J 0.

However, due to the peculiar triangular coupling be-
tween the diagonal bonds, the hopping of the triplet is
0031-9007�01�87(9)�097203(4)$15.00
forbidden at low orders in perturbation theory [2]. As a
consequence, the triplet band is very flat, a striking fact
observed by neutron scattering experiments [13]. Since
the triplets are very massive particles, it is natural to ex-
pect that they can crystallize at finite density, and it has
been proposed that the plateaus are Wigner crystals of
triplets [14–16]. There exists a spin model which is de-
rived from the Shastry-Sutherland Hamiltonian [17] for
which the plateaus are demonstrated to originate from such
ordered states. However, in this model there are plateaus at
1�4, 1�2, and 3�4, and the overall shape of the magnetiza-
tion curve is not in agreement with experiments. A closely
related physical picture is obtained by describing the mag-
netized triplets by hard-core bosons [15]. Then the repul-
sion may favor charge-density wave states that are among
the known insulating phases of the lattice Bose gas.

FIG. 1. Comparison between the magnetization curve of
SrCu2�BO3�2 measured by Onizuka et al. (dashed line) and the
mean-field result (solid line). Inset: Shastry-Sutherland lattice.
The exchange interaction is J on black links and J 0 on the
dotted ones.
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We take a different approach here, mapping the spin
problem onto a hard-core boson problem and then solving
the hard-core constraint exactly by a further mapping onto
spinless fermions coupled to a CS gauge field [12,18,19].
Within a mean-field approximation, the spin excitation gap
that produces the observed magnetization plateaus arises
from some of the Landau level gaps in the integer quantum
Hall effect for the fermions on a lattice.

The Hamiltonian for the AF Heisenberg model on the
Shastry-Sutherland lattice is

H �
X
�i,j�

Jij
�Si ? �Sj 2 B

X
i

Sz
i , (1)

where �Si are spin- 1
2 operators, the exchange couplings Jij

are equal to J0 when i, j are nearest neighbors on the
square lattice and equal to J when i, j are related by a
diagonal bond �J, J 0 . 0�, and the external magnetic field
B is applied along the z axis. We then map the spin
operators to hard-core boson operators:

H � Hxy 1 Hz , (2)

Hxy �
1
2

X
�i,j�

Jij�by
i bj 1 b

y
j bi� , (3)

Hz �
X
�i,j�

Jz
ij�ni 2 1�2� �nj 2 1�2� 2 B

X
i

�ni 2 1�2� ,

(4)

where ni � Sz
i 1 1�2 is the occupation number of site i.

The bosons are then treated as fermions with an attached
flux tube carrying one flux quantum of fictitious magnetic
field. This can be formulated as an exact mapping between
the spin problem and spinless fermions interacting with
a statistical CS gauge field. In a mean-field treatment,
the flux tubes are smeared out into a uniform background
magnetic field. The flux per square plaquette f is then tied
to the density of fermions and thus to the magnetization of
the spin system:

f

2p
� �n� �

µ
�Sz� 1

1
2

∂
� M 1

1
2

. (5)

It is important to note that the real magnetic field B
applied to the spins acts as a chemical potential for the
fermions as seen from Eq. (4) but does not contribute to
the statistical flux. We treat the Ising term Hz in Eq. (4)
by a simple mean-field decoupling so it becomes a simple
function of the magnetization. The kinetic energy term Hxy

leads to a Hofstadter [20] problem for fermions hopping on
the Shastry-Sutherland lattice. We use a flux attachment
choice leading to flux f�2 on each triangular plaquette.
The one-body problem from Hxy can be straightforwardly
analyzed for rational values f � 2p�p�q�.

Fixing the magnetization M gives us the flux and the
number of fermions through Eq. (5). For this value of f,
we compute the band spectrum of Hxy and fill the bands
with the available fermions. The energy of the filled bands
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leads to a first contribution Exy �M�. We then add the con-
tribution from the Ising interaction Hz to obtain the total
energy E�M�. The magnetization is obtained as a func-
tion of B by minimizing E�M� 2 BM. The Hofstadter
diagram for J � J 0 is given in Fig. 2 where the lowest
curve marks the Fermi level (highest occupied state) and
the upper one marks the lowest unoccupied level. Jumps of
the Fermi energy as a function of M lead to discontinuity
of the slope of the function E�M�. These jumps corre-
sponds to plateaus in the magnetization curve. The struc-
ture of the Hofstadter butterfly thus reflects itself in the
appearance of plateaus. The effects of geometry are en-
coded in the Hofstadter spectrum, whose complexity arises
from the diffraction of the cyclotron orbits by the lattice.

When J is set to zero, the model reduces to the square
lattice which has Néel long-range order. The wave
functions obtained in the spatially uniform CS mean-field
approximation certainly do not encompass this physics.
However, the magnetization curve obtained from this
approach is qualitatively similar to that of the ordered
system: It is featureless all the way to full saturation
(see the J � 0 curve in Fig. 3). If we consider the case
of the triangular lattice, the uniform mean field leads to
curve 4(a). In addition to the zero-field gap found by
Yang, Warman, and Girvin [18], there are many plateaus
in 4(a). This is unrealistic: The triangular lattice spin
system is known to be long-range ordered and, hence,
gapless, and its magnetization process shows only a
single plateau [21] at M�Msat � 1�3. There is a way

FIG. 2. Hofstadter spectrum for the Shastry-Sutherland lat-
tice at J � J 0 � 1. Vertical lines mark the energy bands as
a function of the statistical flux f per square plaquette. Hall
conductances sxy [Thouless–Kohmoto –Nightingale–den-Nijs
(TKNN) integers] are indicated for the regions of the spec-
trum which are explored in the magnetization process from
M�Msat � 21 �f � 0� to M�Msat � 0 �f � p�.
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FIG. 3. Magnetization curves for the Shastry-Sutherland
model (uniform mean field). From left to right J � 0 (dashed
line), 0.75 (full line), 1.5 (dashed line), 2.5 (full line), 3.5
(dashed line), and 5 (full line), with J 0 � 1.

to improve these results by allowing the mean field to
have a three-sublattice structure: One introduces three
fermion densities nA, nB, nC and numerically searches for
a self-consistent solution where the flux fa matches the
density na on each sublattice. For M � 0, we find that
the self-consistent solution remains uniform. However,
for nonzero magnetization the translation symmetry is
broken. This nonuniform mean-field solution leads to
a magnetization curve 4(b) which is much closer to the
truth albeit the zero-field ground state remains unrealistic
(Néel long-ranged order is absent). The 1�3 plateau
has a semiclassical origin: It is easily understood in
the Ising limit Jz ¿ J and survives up to the isotropic
point Jz � J [21]. Our calculation reproduces these
features and we find the three-sublattice magnetizations
nA � nB � 0.922 and nC � 0.155.

We have explored the magnetization process of the
Shastry-Sutherland lattice as a function of the ratio J�J 0.
The curves M�B� are drawn in Fig. 3. For small J we
are close to the square lattice result, i.e., a smooth curve.
Increasing J we observe plateaus developing, the more
complex structure being in the regime J�J 0 � 2 3.

For very large J the curves are again simple. There re-
main only two plateaus at 0 and 1�2. The plateau at zero

FIG. 4. Magnetization curve of the triangular antiferromagnet:
(a) uniform mean field; (b) mean-field with three sublattices.
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field is due to the fact that for large J the tight-binding
bands separate into two groups with very small dispersion,
and there is essentially a huge gap in the Hofstadter spec-
trum that does not depend much upon flux. For J 0 � 0 and
an appropriate choice of gauge, our wave function exactly
reproduces the dimer limit. In the intermediate regime,
the curve depends on the details of the spectrum. The
plateaus have a finite domain of stability which is given in
Fig. 5.

To reproduce the qualitative shape of the experimen-
tal magnetization curve for SrCu2�BO3�2, we find that
J 0 � 29.5 K and J � 74 K; the resulting fit is shown in
Fig. 1. While the zero-field gap is not well reproduced,
we find 13 instead of 34 K, the field strengths at which the
plateaus occur and the roundings close to the plateaus are
in very good agreement with the experiment. The values
of J,J 0 are reasonably close to the recent estimates [10]
from neutron scattering data J 0 � 43 K and J � 71 K.
These values are not precisely known since there is some
amount of three-dimensional dispersion of the low-lying
triplet that should be taken into account. We predict promi-
nent plateaus at 1�3 and 1�2 and nothing else until full
saturation. Note also that at 1�4 there is in fact an avoided
plateau: The value of J 0�J is just outside the range of
stability of the 1�4 plateau on Fig. 5. The result of CS
mean-field theory is quite different from the semiclassical
analysis of the effective Bose gas [16] and from the exactly
soluble spin model [17].

As can be seen in Fig. 5, the spin gap (plateau at
M�Msat � 0) opens at J�J 0 � 0 in this approach instead
of opening at the correct critical coupling J�J 0 � 1.5.
This feature comes from the fact that the Néel state of the
square-lattice antiferromagnet is not correctly described
in the uniform mean-field approximation, as mentioned
above in the case of the triangular-lattice antiferromagnet.
This is corrected by computing nonuniform solutions of
the mean-field CS approach with two sublattices [19].

FIG. 5. Width of the magnetization plateaus vs J�J 0 for
M�Msat � 0, 1

2
, 1

3
, and 1

4
. Additional plateaus at fractions 1

n
for n $ 5 exist near J�J 0 	 1.5.
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From the good fit in Fig. 1, we deduce that the CS
mean-field theory works better for magnetized than un-
magnetized states. This is because the initial mapping to
hard-core bosons selects out a preferred spin quantization
axis which, together with the mean-field treatment of the
Ising term, obscures the SU(2) symmetry in the underly-
ing spin problem. The Zeeman energy reduces the SU(2)
to the U(1) symmetry associated with conservation of Sz ,
which in the language of the fermions is simply particle
number conservation. We note that the physical magnetic
field breaks T symmetry in the orbital part of a Hubbard
model description of the system but has no effect in a pure
spin model description other than to introduce a Zeeman
term. However, our mean-field solution does break T sym-
metry. The increased size of the “magnetic” unit cell (due
to the CS flux) gives an integer number of particles per
unit cell as required for the existence of a gap [22] even
though there is no translation symmetry breaking in the
spin density.

It is important to check whether the plateau states are
robust to fluctuations beyond mean field. Following an
idea of Fradkin [23], Yang et al. [18] showed that Gaussian
fluctuations of the CS gauge field are massive provided that
the Thouless–Kohmoto–Nightingale–den-Nijs [24] inte-
ger describing the quantized Hall coefficient of the fer-
mions on the frustrated lattice differs from the continuum
value of unity. We have computed the TKNN integers
by following the evolution of gaps from the square lattice
case where the TKNNs are given by a Diophantine equa-
tion. None of the plateaus are suppressed by fluctuations
since we find s � 23, 22, and 21, respectively, for the
plateaus at 1

4 , 1
3 , and 1

2 (see Fig. 2). At M�Msat � 0, we
have s � 21 (respectively, 0) for J�J 0 ,

p
�2� [respec-

tively, J�J 0 .
p

�2�].
A consequence of these nontrivial quantized Hall coef-

ficients for the fermions is that the spin state is chiral and
exhibits a “spin quantum Hall effect” [25]. Whether this
new physics is actually occurring in SrCu2�BO3�2 or is
an unrealistic feature of our mean-field approximation re-
mains to be seen. One test of our model is the prediction
of a strong plateau in the magnetization beginning at 60 T,
a field which is within reach of modern pulsed magnets.

The authors are grateful to L. Balents, E. Fradkin, M.
Kohmoto, S. Sachdev, G. Semenoff, K. Totsuka, and K.
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Note added.—Totsuka et al. [26] have recently investi-
gated the nature of various excited states in the Shastry-
Sutherland model.
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